DataCamp
main
main
  • Main Page
  • Career Tracks
    • Data Scientist with Python
      • Untitled
    • Machine Learning Scientist with Python
  • Courses
    • Courses
      • Supervised Learning with scikit-learn
      • Unsupervised Learning in Python
      • Linear Classifiers in Python
      • Machine Learning with Tree-Based Models in Python
      • Extreme Gradient Boosting with XGBoost
      • Cluster Analysis in Python
      • Dimensionality Reduction in Python
      • Preprocessing for Machine Learning in Python
      • Machine Learning for Time Series Data in Python
      • Feature Engineering for Machine Learning in Python
      • Model Validation in Python
        • Basic Modeling in scikit-learn
        • Validation Basics
        • Cross Validation
        • Selecting the best model with Hyperparameter tuning.
      • Skill Assessment
      • Machine Learning Fundamentals in Python
      • Introduction to Natural Language Processing in Python
      • Feature Engineering for NLP in Python
      • Introduction to TensorFlow in Python
      • Introduction to Deep Learning in Python
      • Introduction to Deep Learning with Keras
        • 1. Introducing Keras
        • Chapter2
      • Introduction to Deep Learning with Keras
      • Advanced Deep Learning with Keras
      • Image Processing in Python
      • Image Processing with Keras in Python
      • Hyperparameter Tuning in Python
      • Introduction to PySpark
      • Machine Learning with PySpark
      • Winning a Kaggle Competition in Python
  • Untitled
Powered by GitBook
On this page
  • Python Programming
  • Complete the code to return the output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Select the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Select the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output
  • Complete the code to return the output
  • Expected Output

Was this helpful?

Untitled

Python Programming

****

Complete the code to return the output

d = {
    'one': 1,
    'two': 2,
    'three': 3,
    'four': 4
}

d[]
d['two']

Add 'Patchwork' to the end of the boardgames list.

Complete the code to return the output

boardgames = [
  'Rivals for Catan',
  '7 Wonders Duel',
  'Carcassonne',
  'Hive',
]

('Patchwork')

print(boardgames)

Expected Output

['Rivals for Catan', '7 Wonders Duel', 'Carcassonne', 'Hive', 'Patchwork']

6s

Define a function named hours_to_seconds that converts hours to seconds.

Complete the code to return the output

def hours_to_seconds(hours ):
    return hours * 60 * 60

hours_to_seconds(8)

Expected Output

28800

Fill in the blanks

Change the rating of the book to 4.6

Complete the code to return the output

book = {
    'title': 'The Giver',
    'author': 'Lois Lowry',
    'rating': 4.13
}

book['rating'] = 4.6

book['rating']

Expected Output

4.6

What would be the output of the code snippet?

ints = set([1,1,2,3,3,3,4])
print(len(ints))
  • 7

  • 6

  • 4

  • 1

Access the docstrings of the factorial() function.

Complete the code to return the output

def factorial(n):
    """returns n!"""
    return 1 if n < 2 else n * factorial(n-1)

factorial.__doc__

Expected Output

'returns n!'

Count the number of banks in the online_banks tuple.

Select the code to return the output

online_banks = ('consensus systems', 
               'chain inc', 
               'abra', 
               'bitfury')

number_of_items = len(online_banks)

print(number_of_items)
  • online_banks.count()

  • online_banks.len()

  • len(online_banks)

  • max(online_banks)

Expected Output

4

Appropriately call the function below.

Complete the code to return the output

x = lambda : "I know how to call this function."

x()

Expected Output

'I know how to call this function.'

Complete the code to return the output

class AstroBody:
    description = 'Natural entity in the observable universe.'    

class Star(AstroBody):
    pass

sun = Star()

sun.description

Expected Output

'Natural entity in the observable universe.'

Complete the type hints in the function below.

Select the code to return the output

def add_two(x: int)-> int:
  return x + 2

add_two(1)
  • ::

  • <>

  • :

  • ->

  • =>

Expected Output

3

Your answer has been submittedNext Question

Complete the code to return the output

dict_gen = { num: num*10  for num in range(5) }

dict_gen

Expected Output

{0: 0, 1: 10, 2: 20, 3: 30, 4: 40}

Define a function that squares a single input argument. Complete the docstring for the function.

Complete the code to return the output

def square(x):
    """Returns the square of the argument x"""
    return x*x

square.__doc__

Expected Output

'Returns the square of the argument x'

Complete the code to return the output

class Candy:
    flavor = 'sweet'
    
    def __init__(self, name):
        self.name = name
        
c = Candy('Chocolate')

c.name

Expected Output

'Chocolate'

Complete the code to return the output

class Planet:
    def __init__(self, name, diameter_km):
        self.name = name
        self.diameter_km = diameter_km
        
e = Planet('Earth', 12742)

e.name, e.diameter_km

Expected Output

('Earth', 12742)

Declare an empty class named BankAccount

Complete the code to return the output

class BankAccount:
    
    pass
  
account = BankAccount()
print(type(account))

Expected Output

<class '__main__.BankAccount'>

Complete the code to return the output

class Person:
    def __init__(self, name):
        self.name = name

m = Person('Michael')

m.name

Expected Output

'Michael'

Get the value of the "three" key using a dictionary method.

Complete the code to return the output

d = {
    'one': 1,
    'two': 2,
    'three': 3,
    'four': 4
}

d.get('three')

Expected Output

3

Add 'Gloomhaven' to the boardgames list in the first position

Complete the code to return the output

boardgames = [
  'Pandemic Legacy: Season 1', 
  'Terraforming Mars', 
  'Brass: Birmingham'
]

boardgames.insert(0, 'Gloomhaven')

print(boardgames)

Expected Output

['Gloomhaven', 'Pandemic Legacy: Season 1', 'Terraforming Mars', 'Brass: Birmingham']

Complete the code to return the output

x = (1, 2, 3)
s = set(x)

s

Expected Output

{1, 2, 3}

Complete the code to return the output

w = 'python'

w_iterator = iter(w)

next(w_iterator)

Expected Output

'p'

Complete the code to return the output

letters = ['a', 'b', 'c']
for  in enumerate(letters):
for ii, x in enumerate(letters):
    print(ii, ": ", x)

Expected Output

0 :  a
1 :  b
2 :  c

Complete the code to return the output

with open('hello.txt', 'w') as file:
  file.write("hello!")

print(file.closed)

Expected Output

True

Complete the code to return the output

class Building:

    def __init__(self, number):
        self.number = number

b = Building(245)

b.number

Expected Output

245

Call the function defined below (with the appropriate input argument) to produce the desired output.

Complete the code to return the output

def return_random(value):
    return value


return_random('two')

Expected Output

'two'

Add a key-value pair to the d Python dictionary such that it matches the output.

Complete the code to return the output

d = {
    'apple': 1,
    'banana': 2,
    'coconut': 3
}

d['durian'] = 4


d

Expected Output

{'apple': 1, 'banana': 2, 'coconut': 3, 'durian': 4}

Complete the code to return the output

class Dog:
    def __init__(self):
        pass
    
    def bark(self):
        return "bark bark bark bark bark bark..."

d = Dog()
d.bark()

Expected Output

'bark bark bark bark bark bark...'

Define a function named hours_to_seconds that converts hours to seconds.

Complete the code to return the output

def hours_to_seconds(hours):
    return hours * 60 * 60

hours_to_seconds(8)

Expected Output

28800

Complete the statement using a list comprehension with appropriate logic and operations such that it matches the output.

Complete the code to return the output

[i * 3 for i in range(5)]

Expected Output

[0, 3, 6, 9, 12]

Complete the code to return the output

packages = ["numpy", "pandas", "scipy"]

for i in packages:
    print(i)

Expected Output

numpy
pandas
scipy

Add the following item to the book dictionary:

  • format: paperback

Complete the code to return the output

book = {
    'title': 'The Giver',
    'author': 'Lois Lowry',
    'rating': 4.13
}

book['format'] = 'paperback'

book['format']

Expected Output

'paperback'

Complete the code to return the output

class Dog:    
    def woof(self):
        return 'woof!'

t = Dog()
t.woof()

Expected Output

'woof!'

Complete the code to return the output

class Building:
    
    def __init__(self, number):
        self.number = number

b = Building(245)

b.number

Expected Output

245

Complete the code to return the output

with open('hello.txt', 'w') as file:
  file.write("hello!")

print(file.closed)

Expected Output

True

Two functions have been defined for you. Use the square_args() function to square the arguments passed to multiply().

Complete the code to return the output

def square_args(func):
  def inner(a, b):
    return func(a ** 2, b ** 2)
  return inner

square_args
def multiply(a, b):
  return a * b
  
multiply(3, 9)

Expected Output

729

Decorate the adder() and subtractor functions so that the result of the adder function is multiplied by 2 and the result of the subtract function is multiplied by 3.

Complete the code to return the output

def multiply(by = None):
	def multiply_real_decorator(function):
		def wrapper(*args,**kwargs):
			return by * function(*args,**kwargs)
		return wrapper
	return multiply_real_decorator


def adder(a,b):
  return a + b


def subtractor(a,b):
  return a - b

print(adder(2,3))
print(subtractor(2,3))

Expected Output

10
-3

Complete the code to return the output

a = {1, 2, 3, 4}
b = {3, 4, 5, 6}

a.intersection(b)

Expected Output

{3, 4}

Complete the code to return the output

class Cat:   
    
        return 'meow!'

s = Cat()

s.meow()

Expected Output

'meow!'

Complete the code to return the output

class Cat:   
    
    def meow(self):
        return 'meow!'

s = Cat()

s.meow()

Expected Output

'meow!'

Complete the code to return the output

f = : x * y
f = lambda x, y: x * y

f(3,3)

Expected Output

9

The function sample has been written using a for loop, as shown below. Using a list comprehension, create a more efficient version of this function.

def sample(n):
    x = []
    for i in range(n):
        x.append(random.random())
    return x

Complete the code to return the output

import random
random.seed(2427)

def efficient_sample(n):
  x = [random.random()  for n]
  x = [random.random() for i in range(n)]
  return x

efficient_sample(20)

Expected Output

[0.6709313964859867,
 0.9738115340563225,
 0.6064264401595373,
 0.4066259803173813,
 0.241007454546324,
 0.9570332484250537,
 0.2349020347673353,
 0.8876755137054037,
 0.9720131163571095,
 0.1492980772443857,
 0.9414046155591562,
 0.5597323750561738,
 0.7608989127589141,
 0.5249642801198838,
 0.1344891272249087,
 0.9796560039964438,
 0.06863221669260322,
 0.8766064411366202,
 0.5504489926930571,
 0.4880661379761838]

Complete the code to return the output

s = "a"

s.center(3)

Expected Output

' a '
s = "a"

Complete the code to return the output

lst = ['numpy', 'pandas', 'requests']

lst_gen = (pkg for pkg in lst)

(lst_gen)
next(lst_gen)

Expected Output

'numpy'
PreviousWinning a Kaggle Competition in Python

Last updated 3 years ago

Was this helpful?